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The resolution parameter �A is currently used for evaluating the degree of

similarity between a model and the target structure. Here, quasi-Wilson

distributions are used to represent the local statistics of the normalized

amplitudes both for the target and for the model structure. The study uses the

joint probability distribution approach to provide (i) a description of the

statistical properties of the �A parameter; (ii) a deeper insight into the role, for

the �A estimate, of the high-order moments of the target and of the model

structure-factor distributions; and (iii) new statistical formulas for estimating �A.

The theoretical results have been checked using test proteins.

1. Notation

N, p: number of atoms in the unit cell for the target and for the

model structure, respectively. Usually p�N, but it may also be

p > N.

fj; j ¼ 1; . . . ;N: atomic scattering factors for the target struc-

ture (thermal factor included).

F ¼
PN

j¼1 fj expð2�ihrjÞ = jFj expði’Þ: structure factor of the

target structure.

Fp ¼
Pp

j¼1 fj expð2�ihr0jÞ = jFpj expði’pÞ, where r0j ¼ rj þ�rj:

structure factor of the model structure.

E = A + iB = R expði’Þ, Ep = Ap + iBp = Rp expði’pÞ:

normalized structure factors of F and Fp, respectively.

�N ¼
PN

j¼1 f 2
j , �p ¼

Pp
j¼1 f 2

j .

D ¼ hcosð2�h�rÞi. h�ri is the average vectorial difference

between the p positional vectors of the model atoms and the

corresponding vectors in the target structure. The calculation

of D has to be made per resolution shell (D is expected to

diminish for higher-resolution reflections).

�A ¼ Dð�p=�NÞ
1=2.

�2
R ¼ hj�j

2
i=�N , where hj�j2i is the measurement error.

e ¼ 1þ �2
R.

Ii(x): modified Bessel function of order i.

s ¼ sin2 �=�2.

2. Introduction

A wide literature exists on the joint probability distributions of

structure factors of isomorphous structures: it has been used

for studying, in the reciprocal space, the relationships between

model and target structure, between native proteins and their

derivatives, for finding substructures via anomalous-scattering

effects etc. The simplest joint distribution is also the most

important one: it relies on the structure factors of the target

and of a model for the same reflection h, and is denoted here

as P(E, Ep). It is often employed to drive the model phases

towards the phases of the target structure. We quote the most

important results in the study of this distribution, all obtained

by considering the atomic positional vectors rj as the primitive

random variables and, when the case, �rj as local variables:

(a) Sim (1959) assumed a model structure whose atoms are

located at the same sites of the target atoms (i.e. �rj = 0 for

j = 1, . . . , p):

E ¼
PN
j¼1

fj exp 2�ihrj

( ).
"�N

� �1=2
;

Ep ¼
Pp
j¼1

fj exp 2�ihrj

.
"�p

� �1=2
:

The theory associates the weight

mS ¼ D1 2R0R0p
� �

; ð1Þ

with the phase of the target structure, where R0 and R0p are

structure-factor moduli normalized with respect to the rest of

the structure, and Di(x) = Ii(x)/I0(x).

(b) Srinivasan & Ramachandran (1965) used a more

realistic approach, by allowing errors in the atomic coordi-

nates of the model structure: e.g.

E ¼
PN
j¼1

fj exp 2�ihrj

.
"�N

� �1=2
;

Ep ¼
Pp
j¼1

fj exp½2�ihðrj þ�rjÞ�

.
"�p

� �1=2
:

(c) The same model was used by Read (1986): he used the

likelihood function given by Lunin & Urzhumtsev (1984) to
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provide the probability of the structure-factor magnitudes.

The weight (1) was generalized into

mSR ¼ D1 2�ARRp=ð1� �
2
AÞ

� �
: ð2Þ

(d) Caliandro et al. (2005) derived a more general expres-

sion for P(E, Ep), by considering both measurement errors

[represented by the complex number j�j expði#Þ] and errors in

the model structure,

E ¼
PN
j¼1

fj expð2�ihrjÞ þ j�j expði#Þ

( ).
"�N

� �1=2
;

Ep ¼
Pp
j¼1

fj exp½2�ihðrj þ�rjÞ�

.
"�p

� �1=2
:

For each shell the value of �A may be obtained by the

following relation,

�2
A ¼ hR

2R2
pi � e

� �
: ð3Þ

The average is calculated per resolution shell. Accordingly, the

weights (1) and (2) were generalized into

m ¼ D1 2�ARRp=ðe� �
2
AÞ

� �
: ð4Þ

From the above considerations the crucial role of the para-

meter �A for the efficiency of the phasing process is evident,

particularly in protein crystallography where phasing is not

straightforward. It may also be considered a useful figure of

merit, monitoring the phasing progress: as an example we

consider the expression

hjE� Epj
2
i ¼ hR2

i þ hR2
pi � 2hRRp cosð’� ’pÞi

’ hR2
i þ hR2

pi � 2hmRRpi;

which is expected to be minimum when the model coincides

with the target. Since (Read, 1986; Caliandro et al., 2005)

hmRRpi = �A, the larger �A the smaller the vectorial difference

between E and Ep .

In the CCP4 package (Collaborative Computational

Project, Number 4, 1994) a specific program (SIGMAA; Read,

1986) is dedicated to the �A estimation: measured reflections

are partitioned in resolution shells (�A is a resolution-

dependent parameter) and for each shell a maximum-

likelihood estimate is derived. The procedure implies the

normalization of the structure factor shell-by-shell, i.e. the

locally normalized quantities

hjFFpj
2
i

hjFj2ihjFpj
2
i
: ð5Þ

In terms of normalized structure factors (calculated according

to the Wilson plot) the quantity (5) may be replaced by

hR2R2
pi

hR2ihR2
pi
: ð6Þ

Local renormalization has never been theoretically justified,

but it is necessary in practice to relate the local values of

hF2F2
pi with the marginal moments of the second order, say

hjFj2i and hjFpj
2
i.

The need for an accurate �A estimate is crucial for any

phasing method, particularly also for the VLD method (Burla,

Caliandro et al., 2010; Burla, Giacovazzo & Polidori, 2010), a

new phasing approach using the properties of the Fourier

transform for recovering the correct structure from a random

model. But, in spite of the wide use of �A, not all of the

statistical properties of �A are well known. In this paper we

will:

(i) derive the formula, equivalent to equation (3), valid for

centric crystals;

(ii) provide a theoretical justification for the local renor-

malization of the structure factors by using quasi-Wilson

distributions;

(iii) study the effects, on the �A estimate, of the deviations

of the structure-factor statistics from Wilson distributions; and

(iv) provide additional statistical tools for estimating �A.

The conclusive formulas will be applied to some test cases.

3. The calculation of rA in P1

In accordance with point (i) of x2 we extend the approach of

Caliandro et al. (2005) to centric space groups by calculating

the joint probability distribution function PðE;EpÞ in P1

under the following conditions:

(i) The coordinates of the vectors rj, j = 1, . . . , N, are the

primitive random variables, uniformly distributed in the unit

cell. The variables �rj, j = 1, . . . p, are local variables randomly

distributed around zero. In the absence of any information on

their distribution and on their mutual correlation we will

assume that they are independent of each other and uniformly

distributed around zero.

(ii) The supplementary primitive random variable � is used

(� is now a real number), arising from the experimental

uncertainty of the observed structure-factor amplitude.

Accordingly, the mathematical model for the structure factors

will be

E ¼ 2
PN=2

j¼1

fj cosð2�hrjÞ þ �

( ).
�N

� �1=2
;

Ep ¼ 2
Pp=2

j¼1

fj cos½2�hðrj þ�rjÞ�

.
�p

� �1=2
:

Since

hjFj2i ¼ �N þ h�
2i; hjFpj

2
i ¼ �p and hFFpi ¼ D�p;

we have

hR2i ¼ 1þ �2
R ¼ e; hRp

2i ¼ 1

and

hEEpi ¼ D �p=�N

� �1=2
¼ �A:

Finally, the characteristic function of the distribution PðE;EpÞ

is

C u; up

� �
¼ exp i uEþ upEp

� �� �
¼ exp �1

2eu2
� 1

2u
2
p � �Auup

� �
;
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from which we obtain

P E;Ep

� �
¼

1

ð2�Þ½ðe� �2
AÞ�

1=2

� exp �
1

2ðe� �2
AÞ

eE2
p þ E2 � 2�AEEp

� �� 	
:

Then

hR2R2
pi ¼ eþ 2�2

A ð7Þ

or also

�2
A ¼ ð1=2ÞðhR2R2

pi � eÞ: ð8Þ

Equation (8) strongly differs from equation (3), the corre-

sponding relation for P1: using (3) for centric space groups (or

for acentric space groups with a high percentage of centric

reflections) may lead to strong overestimates of �A. Equation

(8) agrees well with Wilson statistics. Indeed, on supposing e

very close to unity,

(i) if �A = 1, model and target structure coincide, and

hR2Rp
2i = hR4i = 3, the value expected by Wilson statistics;

(ii) if �A = 0, then P Eð Þ and P Ep

� �
are uncorrelated, and

hR2R2
pi = hR2ihR2

pi = 1.

Accordingly, the average hR2R2
pi is expected to lie in the

range 1–2 for acentric crystals, and in the range 1–3 for centric

ones.

4. The role of higher-order moment in the rA

estimation

So far we have assumed that the atoms are randomly

distributed in the unit cell: this is equivalent to assuming that

the experimental normalized structure-factor amplitudes fit

the Wilson distributions

P1ðRÞ ¼ 2R expð�R2Þ; ð9Þ

P1ðRÞ ¼ ð2=�Þ
1=2 expð�R2=2Þ; ð10Þ

for acentric and centric space groups, respectively. The above

hypothesis is frequently violated in practice: indeed, because

of chemical interactions, atoms are not randomly distributed

and often the structure-factor statistics show strong deviations

from Wilson equations. The consequent effect is that Wilson

plots are never straight lines, but are usually curves wrapped

around least-square straight lines: moments of P(R) or of

P(Rp) may locally attain values strongly different from those

foreseen by Wilson statistics. Such effects may be responsible

for local overestimates or underestimates of the �A parameter.

We will show that �A, a resolution-dependent parameter,

depends not only on the value of the joint moment hR2R2
pi but

also on the local amplitude distributions of the target and of

the model structures (which may be represented by the set of

their moments).

Such dependence is not evident when one considers equa-

tions (3) or (8), just because some fourth-order moments are

replaced by their numerical Wilson values. Indeed, a more

careful inspection of the results obtained in x3 shows that (8) is

the numerical result of the following equation (obtained when

the integration on Rp is already performed; of course, one can

first integrate over R and then over Rp),

hR2R2
pi ¼ e� �2

A

� �
ð2=�Þ1=2

R1
0

R2 expð�R2=2Þ dR

þ ð2=�Þ1=2�2
A

R1
0

R4 expð�R2=2Þ dR

¼ e� �2
A

� �
hR2
i þ �2

AhR
4
i: ð11Þ

From (11), equation (8) arises because it is assumed that

structure-factor magnitudes obey the Wilson distribution (10):

then hR2i = 1 and hR4i = 3. Such assumptions are no longer

valid if the local amplitude distribution does not fit Wilson

statistics: then the moments should be replaced by more

realistic values. We therefore need a mathematical tool to

modify standard Wilson distributions in order to take into

account the effects of the chemistry. This is described in x5.

5. Quasi-Wilson distributions

According to Debye (1915) the expected value of jFhj
2 per

resolution shell is given by

hjFhj
2
i ¼ �N þ

XN

i6¼j¼1

fi fj

sin 2�hrij

2�hrij

; ð12Þ

where h = |h| and rij = |ri � rj|. We will refer to the last term on

the right-hand side of (12) as the interference term. Equation

(12), combining atomic scattering and interference terms,

gives a full account of the average scattering versus s. Vice

versa, it may be used to estimate, via Fourier transform

(Cascarano et al., 1992), the shortest interatomic distances.

Owing to crystal-chemical reasons, such distances are usually

clustered (Hall & Subramanian, 1982a,b; Morris et al., 2004).

The overall effects, frequently occurring in any resolution

shell, are:

(a) hjFhj
2
i>�N or hjFhj

2
i<�N, according to the value of

the local interference term. In terms of normalized structure

factors this condition leads to the relation

hR2
hi ¼ 1þ


XN

i 6¼j¼1

fi fj

sin 2�hrij

2�hrij

�
=�N ¼ �;

where � is a parameter oscillating about unity.

(b) The classical Wilson distribution is no longer satisfied:

for example, the percentage of strong reflections may be much

larger or smaller than that theoretically predicted by Wilson.

To describe such local statistical effects we will continue

to consider the atomic positional vectors rj as the primitive

random variables, �rj as local variables, and we will define in

acentric space groups

E ¼ �1=2
PN
j¼1

fj expð2�ihrjÞ þ j�j expði#Þ

" #
= �N

� �1=2
;

Ep ¼ �
1=2
p

Pp
j¼1

fj exp½2�ihðrj þ�rjÞ�= �p

� �1=2
:
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The purpose of the above new definitions for E and Ep is to

allow integrations like those described in (11) to be performed

over moduli that do not strictly obey Wilson distributions. We

obtain

PðRÞ ¼ ð2=e�ÞR expð�R2=e�Þ ð13aÞ

and

PðRpÞ ¼ ð2=�pÞRp expð�R2
p=�pÞ: ð13bÞ

Similar expressions may be obtained for the centric case: in

particular, defining

E ¼ 2�1=2
PN=2

j¼1

fj cosð2�hrjÞ þ �

" #
= �N

� �1=2

and

Ep ¼ 2�1=2
p

Pp=2

j¼1

fj cos½2�hðrj þ�rjÞ�= �p

� �1=2

leads to the distributions

PðRÞ ¼ ð2=�e�Þ1=2 exp½�R2=ð2e�Þ� ð14aÞ

and

PðRpÞ ¼ ð2=��pÞ
1=2 exp½�R2

p=ð2�pÞ�; ð14bÞ

respectively. If �, �p, e are equal to unity, then (13) and (14)

reduce to (9) and (10), respectively. The resolution shells for

which � > 1 or � < 1 correspond to positive or to negative

values of the interference term.

The distributions (13a) and (14a) are plotted in Figs. 1 and 2

for the acentric and for the centric case, respectively, for some

selected values of �. Such distributions modify the classical

Wilson distributions in order to take into account (i) the

experimental shift of hR2i from unity; (ii) an exceptional

number of large or small normalized amplitudes, as frequently

occurs when pseudo-symmetries are present.

The question is now, how to fix the � value for which (13)

and (14) fit the experimental distributions? The estimate of �
for a local experimental distribution may be obtained just by

calculating the marginal moments of (13) and (14), according

to the general integration formulasZ 1
0

x2n expð�px2
Þ dx ¼

ð2n� 1Þ!!

2ð2pÞ
n ð�=pÞ

1=2 andZ þ1
0

x2nþ1 expð�px2
Þ dx ¼

n!

2pnþ1
: ð15Þ

By considering the low-order moments (up to the order six) of

the experimental amplitude distribution we obtain (subscripts

1 and 1 indicate that averages are performed for centric and

acentric crystals, respectively)

hRi1 ¼
�1=2

2
ðe�Þ1=2; hR2

i1 ¼ e�; hR3
i1 ¼

3

4
�1=2
ðe�Þ3=2;

hR4i1 ¼ 2ðe�Þ2; hR5i1 ¼
15

8
�1=2ðe�Þ5=2; hR6i1 ¼ 6ðe�Þ3;

ð16Þ

and

hRi1 ¼ ð2=�Þ
1=2
ðe�Þ1=2; hR2

i1 ¼ e�; hR3
i1 ¼

23=2

�1=2
ðe�Þ3=2;

hR4
i1 ¼ 3ðe�Þ2; hR5

i1 ¼ 27=2
ðe�Þ5=2��1=2; hR6

i1 ¼ 15ðe�Þ3:

ð17Þ

The moments of the model amplitude distribution (not written

here for the sake of simplicity) may be obtained by replacing

in (16) and (17) the value e� by �p.

6. The rA estimate via quasi-Wilson distributions

Let us suppose that, per resolution shell, we have used the

experimental distributions PðRÞ and PðRpÞ given by (13) and

(14), and that for each shell we have estimated � and �p

according to one of the relationships (16) and (17). Then the

local joint probability distribution PðE;EpÞ may be studied by

first calculating its characteristic function C, and then calcu-

lating its Fourier transform. For the acentric case we obtain
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Figure 1
Quasi-Wilson distributions for acentric crystals for different values of �:
they take into account local hR2i oscillations generated by crystal
chemistry. The curve for � = 1 corresponds to the acentric Wilson
distribution.

Figure 2
Quasi-Wilson distributions for centric crystals for different values of �:
they take into account local hR2i oscillations generated by crystal
chemistry. The curve for � = 1 corresponds to the centric Wilson
distribution.



C u; up; v; vp

� �
¼ exp

n
�

1

4

h
�eðu2

þ v2
Þ þ �pðu

2
p þ v2

pÞ

þ 2ð��pÞ
1=2�Aðuup þ vvpÞ

io
and for the centric case we obtain

C u; up

� �
¼ exp �

1

2
�eu2 �

1

2
�pu2

p � ð��pÞ
1=2�Auup

� 

:

In the acentric case u; up; v; vp are carrying variables asso-

ciated with A, Ap, B, Bp, respectively; in the centric case u; up

are carrying variables associated with E, Ep. By Fourier

transform we derived for the acentric case

PðR;Rp; ’; ’pÞ

¼ RRp

��2

��pðe� �
2
AÞ

exp
n
�

1

��pðe� �
2
AÞ

�

h
�pR2 þ e�R2

p � 2ð��pÞ
1=2�ARRp cosð’� ’pÞ

io
;

from which

hR2R2
pi ¼ ��pðeþ �

2
AÞ

and

�2
A ¼

hR2R2
pi

��p

� e


 �
: ð18Þ

The conditional distribution Pð’jR;Rp; ’pÞ is then given by

Pð’jR;Rp; ’pÞ ¼ ½2�I0ðXÞ�
�1 exp X cosð’� ’pÞ

� �
;

where

X ¼ 2
�A

ðe� �2
AÞ

RRp

ð��pÞ
1=2
: ð19Þ

For the centric case we obtain

P E;Ep

� �
¼

1

ð2�Þ½��pðe� �
2
AÞ�

1=2
exp

n
�

1

2��pðe� �
2
AÞ

�

h
e�E2

p þ �pE2
� 2ð��pÞ

1=2�AEEp

io
from which

hR2R2
pi ¼ ��p eþ 2�2

A

� �
and

�2
A ¼

1

2

hR2R2
pi

��p

� e


 �
: ð20Þ

Additional calculations show that the phase indication ’ ’ ’p

will then depend on the value of

tanh
�A

ðe� �2
AÞ

RRp

ð��pÞ
1=2
: ð21Þ

Both equations (18) and (20) satisfy the asymptotic �A

features: when R and Rp are uncorrelated, �A vanishes; when

the partial and the target structures coincide, �A attains unity.

In order to apply equations (18)–(20), prior estimates of �p

and � are needed. In accordance with (16) and (17) we may

estimate them via moments of different order: then different

formulas arise according to the chosen moment order. It is

worthwhile stressing that modeling a distribution via equa-

tions (13) or (14) by using the � value suggested by a moment

of a given order does not allow all the features of the

experimental data to be captured, even if the chosen � value

allows the experiment to fit better than the corresponding

Wilson distribution. As a numerical example, according to (16)

the value of � to use for modeling the experimental distribu-

tion may be obtained both as � = hR2i1 or as � = ðhR4i1=2Þ1=2. In

practice, these two values seldom coincide [for example,

because the percentage of measured reflections with very

large amplitude does not coincide with that foreseen by (13a)].

The above theoretical results enable us to suggest the

following general expression for the �A estimate,

�2
A ¼ qe

hR2R2
pi

hRmi
2=m
hRm

p i
2=m

w2=m
m w2=m

pm � 1

 !
; ð22Þ

where q = 1 or 0.5 according to whether the crystal is acentric

or centric; hRmi and hRm
p i are the experimental m-order

moments for the target and the model structure, respectively;

wm = hRmiW and wpm = hRm
p iW are the m-order moment values

according to Wilson distributions;

wm ¼ �
1=2=2; 1; ð3=4Þ�1=2; 2; ð15=8Þ�1=2; 6

for m = 1, 2, . . . , 6 for acentric crystals; and

wm ¼ ð2=�Þ
1=2; 1; 23=2=�1=2; 3; 27=2=�1=2; 15

for m = 1, 2, . . . , 6 for centric crystals.

Equation (22) encompasses previous formulas for the �A

estimation: in particular, when m = 2 is selected, it justifies the

practice of using the locally renormalized structure factors

[see equation (6)]. Furthermore, equations (19) and (21)

suggest that the values of �p, � and e should also be taken into

account to estimate the phase reliability. This by no means

implies that locally renormalized structure-factor moduli are

the best coefficients for the calculation of the observed

electron-density maps. Indeed, local renormalization strongly

reduces the correlation between structure-factor moduli and

dominant interatomic distances in the structure. Observed

amplitudes, normalized according to the Wilson plot, and

phases estimated according to (19) and (21) should be

preferable.

7. About the rA estimate from joint moment hhhRl Rp
l
iii

So far, �A estimates have been derived via the use of hR2R2
pi:

obviously, any other joint moment may be employed for the

same purpose. First we focus our attention on the joint

moment hRRpi. For acentric crystals, under the hypothesis that

the experimental amplitude distributions for the target and

the model structures satisfy Wilson statistics, the following

relation holds (Caliandro et al., 2005),

hRRpi ¼
�

4
e1=2 F

�1

2
;
�1

2
; 1;

�2
A

e


 �
; ð23Þ
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where F is the Gaussian hypergeometric function. For appli-

cation purposes Fð�1=2;�1=2; 1; �2
A=eÞ was numerically

approximated by the function ½1þ ð�=12Þð�2
A=eÞ�, so estab-

lishing the following relation,

hRRpi ¼
�

4
e1=2 1þ

�

12

�2
A

e

� 

: ð24Þ

Even if (22) and (23) are very close to each other when the

argument of the hypergeometric function varies in the range

(0, 1), equation (24) does not perfectly satisfy the asymptotic

�A properties. Indeed, when R and Rp are uncorrelated,

�A vanishes, as it should; but if the partial and the target

structures coincide, �A = ð12=�Þ½ð4=�Þ � 1� = 0.82, instead of

attaining unity. We suggest the better approximation

hRRpi ¼
�

4
e1=2 1þ

4

�
� 1


 �
�2

A

e

� 

; ð25Þ

which perfectly satisfies the required asymptotic �A properties

[in practice, the new approximation replaces �=12 = 0.262 by

ð4=�Þ � 1 = 0.273]. According to (25), hRRpi is expected to lie

in the range (0, 1).

In the case where the experimental amplitude distributions

for the target and the model structures satisfy quasi-Wilson

statistics, we obtain the following relationship,

�2
A ¼

�e

4� �

hRRpi

�1=2�1=2
p

4

�e1=2
� 1

� 

:

As for (18), the values of � and �p may be estimated via any of

the equations (16): the corresponding formulas may then be

written down as

�2
A ¼

�e

4� �

hRRpi

hRmi
1=m
hRm

p i
1=m

w1=m
m w1=m

pm

w1wp1

� 1

 !
: ð26Þ

Let us now consider the use of the general moment hR�R�
p i;

where � is an even number. By definition,

hR�R�
p i ¼

4

��pðe� �
2
AÞ

Z1
0

R�þ1
p exp �

e

�pðe� �
2
AÞ

R2
p

� 

dRp

�

Z1
0

R�þ1 exp �
1

�ðe� �2
AÞ

R2

� 


� I0

2�A

ð��pÞ
1=2
ðe� �2

AÞ
RRp

" #
dR:

After some calculations we obtain

hR�R�
p i ¼ 2�

�

2
þ 1

� � ��=2

�p

ðe� �2
AÞ
�=2

�

Z1
0

R�þ1
p exp �R2

p=�p

� �
L�=2 �

�2
A

�pðe� �
2
AÞ

Rp
2

� 

dRp;

ð27Þ

where L�=2 are Laguerre polynomials of order � in Rp.

For � = 2, equation (27) reduces to [to be compared with

equation (11)]

hR2R2
pi ¼ �ðe� �

2
AÞhR

2
pi þ �

2
Að�=�pÞhR

4
pi;

showing, for a quasi-Wilson distribution, the relation between

hR2R2
pi (and therefore �A) and the fourth-order moments.

The integration on the right-hand side of (27) may be

accomplished by using the second of the equations (15): we

obtain

hR4R4
pi ¼ 4�2�2

p e2 þ 4e�2
A þ �

4
A

� �
:

Choosing � and �p according to (16) leads to the following

general formula,

hR4R4
pi

hRmi
4=m
hRm

p i
4=m

w4=m
m w4=m

pm

w4wp4

� 1 ¼
1

e2
4e�2

A þ �
4
A

� �
: ð28Þ

Equation (28) may be easily solved with respect to �2
A

per resolution shell. For higher (and even) � values an

equation similar to (28) is expected, with, at the left-hand side,

the term

hR�R�
p i

hRmi
�=m
hRm

p i
�=m

w�=m
m w�=m

pm

w�wp�

� 1;

and a suitable polynomial arising from the integral of L�=2 on

the right-hand side. However, using the moment hR�R�
p i

involves powers up to order 2�þ 1, or, equivalently, moments

up to order 2�. The use of � values larger than four is

discouraged, because the moments of order eight or larger are

too sensitive to small anomalies in the normalized structure-

factor distributions.

Finally we notice that, whatever the value of �, it is

expected that �A decreases with increasing s values. To guar-

antee a soft trend, a least-squares straight line (say, LS �A)

should be calculated for any pair (�, m).

8. Applications

The following applications aim at checking the correctness of

the theory described in the preceding sections. We applied it to

eight proteins: the model electron-density maps were obtained

by molecular replacement via the program REMO09

(Caliandro et al., 2009). We only show the results corre-

sponding to two extreme cases: in the first, with Protein Data

Bank (PDB) code 1xyg (Center for Eukaryotic Structural

Genomics, 2011), the model and the observed normalized

moduli satisfy Wilson statistics well; in the second, with PDB

code 1lat (Gewirth & Sigler, 1995), the observed and model

distributions are very far from the ideal ones. The other six test

structures have intermediate features and are not mentioned

further here.

In Table 1 the column ‘Code’ defines the PDB codes of the

two test proteins and ‘RES’ is the experimental data resolu-

tion. In accordance with the theoretical results of x7 we

explore the potential usefulness of equations (22), (26) and

(28). In Fig. 3 we show, for 1xyg, LS �A versus s for m = 1, . . . , 6

according to (22): the LS �A corresponding to a given m value
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lies below that corresponding to m� 1, but preserves the same

negative slope. In Fig. 4 we show LS �A for 1lat: they have

different slopes, and for m > 3 the �A values constantly go to

zero or become negative for most of the resolution shells (in

these cases LS �A are not calculated).

In Fig. 5 we plot, for 1xyg and for m = 1; . . . 4, LS �A values

corresponding to (26): again LS �A preserve the same negative

slope, but for m > 4 they are not calculated because �A is

negative for most of the resolution shells. For 1lat only the

LS �A corresponding to m = 1 may be calculated, but for

simplicity it is not shown here.

In Figs. 6 and 7, LS �A values corresponding to (28) for m =

1; . . . ; 4 for 1xyg and 1lat, respectively, are plotted: again

LS �A preserve the same negative slope for 1xyg and have

different slopes for 1lat.

The basic reasons for the above features are the following.

The �A values depend on the value of the joint moment

hR�R�
p i and on the values of the parameters � and �p. These

research papers
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Figure 3
1xyg: LS �A versus s for m = 1, . . . , 6 according to equation (22).

Figure 4
1lat: LS �A versus s for m = 1, . . . , 3 according to equation (22).

Figure 5
1xyg: LS �A versus s for m = 1, . . . , 4 according to equation (26).

Figure 6
1xyg: LS �A versus s for m = 1, . . . , 6 according to equation (28).

Figure 7
1lat: LS �A versus s for m = 1, . . . , 6 according to equation (28).

Table 1
For each test structure RES is the data resolution (Å) and Cð�;mÞ is the
correlation between the published electron-density map and the model
map calculated by using weights according to equation (19), where �A is
estimated via different values of � and m.

Code RES � C(�, 1) C(�, 2) C(�, 3) C(�, 4) C(�, 5) C(�, 6)

1xyg 2.19 1 0.63 0.62 0.58 0.42 – –
2 0.63 0.63 0..62 0.61 0.59 0.55
4 0.63 0.63 0.62 0.62 0.61 0.60

1lat 1.90 1 0.53 0.14 – – – –
2 0.52 0.52 0.42 – – –
4 0.50 0.52 0.51 0.50 0.48 0.47



two parameters may be estimated via marginal moments of

different order m. Since such moments are, for the two test

structures, progressively larger than those foreseen by Wilson

statistics, the �A estimate progressively decreases with m. The

decrement is regular for 1xyg (i.e. for all the resolution shells a

similar decrement is observed), and rather wild for 1lat. We

show in Table 2, for m = 1; . . . ; 6, the marginal moments of

1lat for some resolution shells (for Wilson distributions the

expected values in the order are about 0.886, 1, 1.329, 2.00,

3.323, 6.00).

The above results are not unexpected: indeed a structure-

factor amplitude distribution is defined if all its moments

are known; a single moment cannot capture all the features

of the distribution. As a consequence the �A estimates will

be distribution dependent, and will vary according to

the moment order we choose for the estimate: variations of

the local amplitude distributions will influence the �A esti-

mates according to the values of � and m, and will lead to

displaced LS �A or to different LS �A slopes according to

circumstances.

To check the effects of the different �A estimates on the

electron-density maps, in Table 1 we show the correlation

factors Cð�;mÞ between electron-density maps calculated via

the pair ðR; ’Þ (’ are the published phases) and the maps

calculated via the pair ðR; ’pÞ, by using � = 1, 2, 4 and m =

1; 2; . . . ; 6. Favorable values of Cð�;mÞ are always obtained

for � = m, no matter the value of �.

9. Conclusions

A theoretical study of the statistical properties of �A has been

accomplished. Quasi-Wilson distributions have been intro-

duced to describe the local deviations of the structure-factor

moduli from Wilson statistics. In this way a theoretical justi-

fication for the local renormalization of the structure factors

has been provided. A wider class of new probabilistic formulas

has been proposed to estimate the �A parameter: such new

tools have been applied to experimental cases and their mean

statistical features have been studied.
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Table 2
1lat: marginal moments for m = 1, . . . , 6 of the observed normalized
amplitudes for different resolution shells; n in column 1 is the order of the
shell (total number 25) and d (Å) is the corresponding resolution.

n d hRi hR2
i hR3

i hR4
i hR5

i hR6
i

1 8.62 0.74 0.72 0.81 1.02 1.41 2.16
2 6.52 0.64 0.55 0.56 0.66 0.85 1.19
7 3.57 1.01 1.37 2.25 4.24 8.86 19.96
8 3.35 1.04 1.56 3.22 8.90 31.05 126.77
9 3.16 1.01 1.99 7.95 49.74 382.39 3258.13
10 3.00 0.86 1.18 2.52 7.74 29.67 128.40
24 1.94 0.93 1.07 1.53 2.75 6.06 15.95
25 1.90 0.98 1.21 2.04 4.98 17.38 77.53
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